A simple clustering technique to extract subsets of data for function approximation
نویسندگان
چکیده
منابع مشابه
A new clustering technique for function approximation
To date, clustering techniques have always been oriented to solve classification and pattern recognition problems. However, some authors have applied them unchanged to construct initial models for function approximators. Nevertheless, classification and function approximation problems present quite different objectives. Therefore it is necessary to design new clustering algorithms specialized i...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولUsing fuzzy logic to improve a clustering technique for function approximation
Clustering algorithms have been applied in several disciplines successfully. One of those applications is the initialization of Radial Basis Function (RBF) centers composing a Neural Network, designed to solve functional approximation problems. The Clustering for Function Approximation (CFA) algorithm was presented as a new clustering technique that provides better results than other clustering...
متن کاملA method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Hydroinformatics
سال: 2015
ISSN: 1464-7141,1465-1734
DOI: 10.2166/hydro.2015.065